Acta Cryst. (1996). C52, 1164-1166

Bis(tetraphenylphosphonium) Tetrachlorodioxouranate(VI) Dichloromethane Solvate

Dean R. Brown, ${ }^{a}$ Ann M. Chippindale ${ }^{b}$ and Robert G. Denning ${ }^{a *}$

${ }^{a}$ Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, England, and ${ }^{\text {b }}$ Chemical Crystallography Laboratory, 9 Parks Road, Oxford OXI 3PD, England. E-mail: kryst4@vax.ox.ac.uk
(Received 14 November 1995; accepted 13 December 1995)

Abstract

Crystals of the title compound, $\left(\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{P}\right)_{2}\left[\mathrm{UO}_{2} \mathrm{Cl}_{4}\right]$.$\mathrm{CH}_{2} \mathrm{Cl}_{2}$, contain pseudo-octahedral tetrachlorouranyl anions having approximate $D_{4 h}$ and exact C_{i} point symmetry. The asymmetric unit contains two such anions, each distinct and isolated, and each unperturbed by close anion-anion packing, hydrogen bonding or the presence of small polarizing cations. The $\mathrm{U}=\mathrm{O}$ bond lengths are 1.75 (1) and 1.77 (1) \AA, and provide points of reference for the recently reported oxouranium (phosphorane iminato) complex containing the $\mathrm{O}=\mathrm{U}=\mathrm{N}-$ group.

Comment

The linearity of the $\mathrm{UO}_{2}{ }^{2+}$ group and its remarkable chemical stability have excited considerable theoretical and experimental study (Denning, 1992). We prepared recently the first example of a stable nitro-gen-containing structural analogue of the uranyl ion, namely, $\left(\mathrm{Ph}_{4} \mathrm{P}\right)\left[\mathrm{UOCl}_{4}\left\{\mathrm{NP}(m \text {-tol })_{3}\right\}\right]$ (where m-tol is 3methylphenyl), which contains the linear and isoelectronic $\mathrm{O}=\mathrm{U}=\mathrm{N}$ - group (Brown, Denning \& Jones, 1994). In order to analyse the bonding in this species, it is useful to compare the $\mathrm{U}=\mathrm{O}$ bond length with that found in a related uranyl complex which is unperturbed either by small cationic neighbours or by hydrogen bonding. The title compound, (I), meets these requirements and indeed contains the same cation as the $\mathrm{O}=\mathrm{U}=\mathrm{N}$ - compound.

$$
2\left[\begin{array}{ll}
\mathrm{Ph}^{\prime} & \mathrm{Ph} \\
\mathrm{Ph}^{\prime} & \mathrm{Ph}^{\prime}
\end{array}\right]^{+}\left[\begin{array}{lll}
& \mathrm{O} \\
\mathrm{Cl}^{\prime} & \mathrm{P}^{\prime} \\
\mathrm{Cl}^{-} & \mathrm{Cl} \\
\mathrm{U} & \mathrm{Cl}
\end{array}\right]^{2-} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}
$$

(I)

A structural survey of uranyl compounds shows that $\mathrm{U}=\mathrm{O}$ bond distances can vary between 1.52 and $2.00 \AA$ (Denning, 1983). In most examples of the $\left[\mathrm{UO}_{2} \mathrm{Cl}_{4}\right]^{2-}$ ion, this distance appears to be close to $1.75 \AA$, but reported values range from 1.58 to $1.94 \AA$. In $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{UO}_{2} \mathrm{Cl}_{4}\right]$, for example, the $\mathrm{U}=\mathrm{O}$ bond lengths
are 1.68 (1) and 1.69 (1) \AA (Di Sipio, Tondello, Pelizzi, Ingletto \& Montenero, 1974a) and in $\left(\mathrm{Pr}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{UO}_{2} \mathrm{Cl}_{4}\right]$ they are 1.65 (1) and 1.58 (2) \AA (Di Sipio, Tondello, Pelizzi, Ingletto \& Montenero, 1974b). Several other structures contain organic cations which can hydrogen bond to the uranyl O atoms and this generally leads to longer $\mathrm{U}=\mathrm{O}$ distances and deviations from Badger's

Fig. 1. A view of the title compound showing the atomic labelling scheme and displacement ellipsoids plotted at the 50% probability level (CAMERON: Pearce. Watkin \& Prout, 1992).

Fig. 2. View (CAMERON: Pearce, Watkin \& Prout. 1992) of the unit cell along the a axis. The dichloromethane Cl atoms are directed towards the U atom. H atoms have been omitted for clarity.
rule relating the $\mathrm{U}=\mathrm{O}$ bond length to the vibrational frequency (Bartlett \& Cooney, 1989). Variations in the structures of compounds of the same type, for example, $\left[M_{2} \mathrm{UO}_{2} \mathrm{Cl}_{4}\right]$ ($M=\mathrm{Li}, \mathrm{Na}, \mathrm{Rb}, \mathrm{Cs}$), have been attributed to steric factors (Vorobei, Skiba, Bevz \& Kapshukov, 1971), as well as to the cation polarizability and the interanionic spacing (Vorobei, Skiba, Desyatnik \& Kapshukov, 1969; Vorobei, Skiba \& Bevz, 1970).

There are two structurally similar, although crystallographically distinct, $\left[\mathrm{UO}_{2} \mathrm{Cl}_{4}\right]^{2-}$ and $\mathrm{Ph}_{4} \mathrm{P}^{+}$ions in the unit cell of the title compound (Figs. 1 and 2). The geometries of the $\mathrm{Ph}_{4} \mathrm{P}^{+}$cations are similar to those reported elsewhere (de Wet \& du Preez, 1978). The dichloromethane molecule is far removed from the anions and its H atoms are directed away from the nearest O atoms, precluding any hydrogen-bonding interactions. The $U=\mathrm{O}$ bond lengths [1.75 (1) and 1.77 (1) \AA] are close to those observed in $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{UO}_{2} \mathrm{Cl}_{4}\right]$ [1.76(2) and 1.77 (3) \AA; Bois, Nguyen \& Rodier, 1976] and are in good agreement with the $\mathrm{U}=\mathrm{O}$ distance of 1.76 (1) \AA found in $\left(\mathrm{Ph}_{4} \mathrm{P}\right)\left[\mathrm{UOCl}_{4}\left\{\mathrm{NP}(m \text {-tol })_{3}\right\}\right]$ (Brown, Denning \& Jones, 1994), in which the local $\mathrm{U}=\mathrm{O}$ environment is similar to that observed here.

Experimental

Single crystals of $\left(\mathrm{Ph}_{4} \mathrm{P}_{2}\left[\mathrm{UO}_{2} \mathrm{Cl}_{4}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ were obtained from the reaction mixture used to prepare $\left(\mathrm{Ph}_{4} \mathrm{P}\right)\left[\mathrm{UOCl}_{4}\{\mathrm{NP}\right.$ -$\left.\left.(m-\text { tol })_{3}\right\}\right]$ (Brown, Denning \& Jones, 1994). The uranyl compound is formed in a secondary reaction, together with the uranium bis(iminato) complex $\left[\mathrm{UCl}_{4}\left\{\mathrm{NP}(m \text {-tol })_{3}\right\}_{2}\right]$ (Brown \& Denning, 1996; Brown, 1996), according to
$2 \mathrm{Me}_{3} \mathrm{Si}\left[\mathrm{NP}\left(m-\mathrm{tol}_{3}\right)_{3}\right]+2\left(\mathrm{Ph}_{4} \mathrm{P}\right)\left[\mathrm{UOCl}_{5}\right] \rightarrow$
$\left(\mathrm{Ph}_{4} \mathrm{P}\right)_{2}\left[\mathrm{UO}_{2} \mathrm{Cl}_{4}\right]+\left[\mathrm{UCl}_{4}\left\{\mathrm{NP}(m-\mathrm{tol})_{3}\right\}_{2}\right]+2 \mathrm{Me}_{3} \mathrm{SiCl}$.
The uranyl complex was isolated as small orange parallelepipeds which were sealed into capillaries under dry N_{2}. The IR spectrum of the solid when pressed into a KBr disk was identical to that of unsolvated $\left(\mathrm{Ph}_{4} \mathrm{P}_{2}\left[\mathrm{UO}_{2} \mathrm{Cl}_{4}\right]\right.$ (Day \& Venanzi, 1966), implying that the clathrated dichloromethane is lost by efflorescence.

Crystal data

$\left(\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{P}\right)_{2}\left[\mathrm{UO}_{2} \mathrm{Cl}_{4}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$M_{r}=1175.57$
Triclinic
$P_{\overline{1}}$
$a=11.755$ (8) \AA
$b=14.521$ (3) \AA
$c=15.884(5) \AA$
$\alpha=89.333(1)^{\circ}$
$\beta=77.715(1)^{\circ}$
$\gamma=67.027(1)^{\circ}$
$V=2431.36 \AA^{3}$
$Z=2$
$D_{s}=1.61 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 25 reflections
$\theta=4.33-11.51^{\circ}$
$\mu=0.36 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Parallelepiped
$0.50 \times 0.15 \times 0.15 \mathrm{~mm}$
Orange

Data collection
Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
refined from ΔF
(DIFABS; Walker \&
Stuart, 1983)
$T_{\text {min }}=0.87, \quad T_{\text {max }}=1.00$
5467 measured reflections
4794 independent reflections
2589 observed reflections

$$
[I>2 \sigma(I)]
$$

$R_{\text {int }}=0.04$
$\theta_{\max }=23.0^{\circ}$
$h=-12 \rightarrow 11$
$k=-14 \rightarrow 13$
$l=-1 \rightarrow 15$
3 standard reflections frequency: 60 min intensity decay: 25.5%

Refinement

Refinement on F
$R=0.0461$
$w \cdot R=0.0491$
$S=1.0864$
2589 reflections
545 parameters
H atoms placed geomet-
rically after each cycle;
$U(\mathrm{H})=U_{\mathrm{cq}}(\mathrm{C})$
$(\Delta / \sigma)_{\max }=0.05$
$\Delta \rho_{\text {max }}=0.78 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.71 \mathrm{e}^{\AA^{-3}}$
Extinction correction: none
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, Table 2.2B)

Weighting scheme: 3-term Chebychev polynomial (Carruthers \& Watkin, 1979)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\text {eq }}$
UI	0	0	0	0.0428
U2	0	1/2	1/2	0.0414
CII	-0.1021 (4)	$-0.0869(4)$	0.1263 (3)	0.0764
Cl 2	0.2158 (5)	$-0.0678(4)$	$0.0550(3)$	0.0758
Cl 3	0.1827 (4)	0.3841 (3)	0.3693 (3)	0.0655
Cl 4	-0.1692 (5)	0.5368 (4)	0.4008 (3)	0.0763
C15	0.5353 (6)	0.2414 (6)	0.4299 (5)	0.1260
Cl 6	0.5759 (6)	0.4243 (5)	0.3944 (5)	0.1093
PI	-0.2365 (4)	0.4456 (3)	0.0578 (3)	0.0439
P2	0.2461 (4)	0.0132 (3)	0.3651 (3)	0.0495
Ol	-0.058 (1)	0.1112 (8)	0.0663 (8)	0.0777
O 2	0.030 (1)	0.6055 (9)	0.4629 (7)	0.0734
Cl	-0.357 (1)	0.405 (1)	0.1144 (6)	0.0483
C2	-0.314 (1)	0.304 (1)	0.1252 (6)	0.0476
C3	-0.401 (1)	0.266 (1)	$0.1703(7)$	0.0682
C4	-0.524 (1)	0.328 (1)	$0.2030(7)$	0.0647
C5	-0.564 (1)	(). 428 (1)	0. 1927 (7)	0.0629
C6	-0.480(1)	0.468 (1)	0.1477 (7)	0.0593
C7	-0.296 (1)	0.579 (1)	0.0705 (7)	0.0547
C8	-0.255 (1)	0.630 (1)	0.1222 (8)	0.0627
C9	-0.313 (1)	0.733 (1)	0.1336 (8)	0.0675
C10	-0.410(1)	0.787 (1)	0.0977 (9)	0.0784
Cll	-0.453 (1)	0.737 (1)	$0.0460(9)$	0.0754
C 12	-0.395 (1)	0.632 (1)	0.0322 (8)	0.0639
C13	-0.1935 (9)	(0.408(1)	-0.0565 (8)	0.0428
C14	-0.214 (1)	0.3265 (9)	-0.089 (1)	0.0379
C15	-0.172 (1)	0.295 (1)	-0.175 (1)	0.0639
C16	-0.108 (1)	0.343 (1)	-0.228 (1)	0.0618
C17	-0.086 (1)	0.423 (1)	-0.198(1)	0.0657
C18	-0.130(1)	0.455 (1)	-0.112 (1)	0.0595
C19	-0.099 (1)	0.3879 (8)	0.0997 (9)	0.0383
C20)	-0.101 (2)	0.4069 (9)	0.184 (1)	0.0565
C21	0.003 (1)	0.3619 (9)	0.218 (1)	0.0556
C22	0.116 (1)	0.293 (1)	0.166 (1)	0.0487
C23	0.119 (1)	0.2733 (9)	0.081 (1)	0.0606
C24	0.012 (1)	0.3193 (9)	0.047 (1)	0.0595
C25	0.094 (1)	0.082 (1)	0.3470 (9)	0.0584
C26	0.048 (2)	0.046 (1)	0.2874 (8)	0.0710

C27	-0.067 (1)	0.102 (1)	0.2719 (9)	0.0651
C28	-0.141 (2)	0.195 (1)	0.3130 (9)	0.0660
C29	-0.099 (1)	0.235 (1)	0.3731 (9)	0.0538
C30	0.020 (1)	0.179 (1)	0.3909 (8)	0.0525
C31	0.364 (1)	0.0314 (6)	0.2809 (9)	0.0577
C32	0.481 (1)	0.0168 (7)	0.292 (1)	0.0709
C33	0.573 (1)	0.0236 (7)	0.226 (1)	0.0702
C34	0.545 (1)	0.0455 (6)	0.146 (1)	0. 0597
C35	0.427 (2)	0.0615 (7)	0.130 (1)	0.0608
C36	0.337 (1)	0.0527 (6)	0.1991 (9)	0.0619
C37	0.276 (2)	-0.116 (1)	0.3644 (7)	0.0661
C38	0.177 (2)	-0.146 (1)	0.4004 (7)	0.0707
C39	0.204 (2)	-0.251 (1)	0.4024 (7)	0.0728
C40	0.322 (2)	-0.318 (2)	0.3708 (8)	0.0902
C41	0.420 (2)	-0.291 (2)	0.3360 (8)	0.0988
C42	0.397 (2)	-0.187 (1)	0.3317 (7)	0.0921
C43	0.2532 (9)	0.058 (1)	0.470 (1)	0.0491
C44	0.2747 (8)	0.146 (1)	0.475 (1)	0.0577
C45	0.2603 (9)	0.188 (1)	0.557 (1)	0.0649
C46	0.2261 (9)	0.144 (1)	0.630 (1)	0.0810
C47	0.2062 (9)	0.058 (1)	0.622 (1)	0.0692
C48	0.2188 (8)	0.013 (1)	0.542 (1)	0.0658
C51	0.468 (2)	0.370 (2)	0.438 (1)	0.0882
Table 2. Selected geometric parameters (\AA, ${ }^{\circ}$)				
U1-Cli		2.676 (4)	U2-C13	2.667 (4)
U1-Cl2		2.672 (4)	U2-Cl4	2.684 (5)
U1-OI		1.75 (1)	U2-O2	1.77 (1)
$\mathrm{Cl} 1-\mathrm{U} 1-\mathrm{Cl} 2$		90.1 (2)	$\mathrm{Cl} 3-\mathrm{U} 2-\mathrm{Cl} 4$	89.8 (1)
$\mathrm{Cl1}-\mathrm{Ul}-\mathrm{Ol}$		90.8 (4)	C13-U2-O2	89.9 (4)

In the full-matrix least-squares refinement, a total of 632 restraints were applied to the parameters of the $\mathrm{Ph}_{4} \mathrm{P}^{+}$groups; each phenyl ring was restrained to planarity, $\mathrm{P}-\mathrm{C}$ and $\mathrm{C}-$ C bond lengths were restrained to their common mean, and the $U_{i j}$ parameters were restrained so that $\Delta U \simeq 0$ along bond vectors. Anisotropic displacement parameters were refined for all non-H atoms.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: CRYSTALS (Watkin, Carruthers \& Betteridge, 1985). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: CRYSTALS. Molecular graphics: CAMERON (Pearce, Watkin \& Prout, 1992). Software used to prepare material for publication: CRYSTALS.

The authors thank the EPSRC and British Nuclear Fuels Ltd for the financial support of DRB and the University of Oxford for a Glasstone fellowship for AMC. We also thank Andrew Jeapes of BNFL for valuable discussion and advice.

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: MU1235). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

References

Bartlett, J. R. \& Cooney, R. P. (1989). J. Mol. Struct. 193, 295-300. Bois, C., Nguyen, Q. D. \& Rodier, N. (1976). Acta Cryst. B32, 15411549.

Brown, D. R. (1996). DPhil thesis, University of Oxford, England.
Brown, D. R. \& Denning, R. G. (1996). In preparation.
Brown, D. R., Denning, R. G. \& Jones, R. H. (1994). J. Chem. Soc. Chem. Commun. pp. 2601-2602.
Carruthers, J. R. \& Watkin, D. J. (1979). Acta Cryst. A35, 698-699.

$\operatorname{Bis}(N, N$-dimethylformamide)(pyrocatechol-ato- O, O^{\prime})lithium

Christian Näther, Andreas John, Klaus Ruppert and Hans Bock*
Institut für Anorganische Chemie der Universität Frankfurt, Marie-Curie-Str. 11, 60439 Frankfurt/Main, Germany:
E-mail: naether@bock.anorg.chemie.uni-frankfurt.de

(Received 24 May 1995: accepted 20 November 1995)

Abstract

Reaction of catechol with n-butyllithium in absolute n-hexane yields the corresponding monoanion, which crystallizes from N, N-dimethylformamide $/ n$-hexane solution as the title compound, $\left[\mathrm{Li}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2}\right)\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$. The structure contains Li cations each coordinated by one catechol monoanion and two N, N-dimethylformamide molecules with nearly tetrahedral coordination geometry. The anions are connected via very short $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ hydrogen bridges to form an infinite polymeric one-dimensional structure.

Comment

o-Benzoquinone and its reduction products o-benzosemiquinone and catechol (1,2-dihydroxybenzene) are

